
AD-8176 971 FREE BOUNDARY CONTROL OF BROWNIAN MOTION AND A RELATED OPTIMAL STOPPING P. (U) FLORIDA STATE UNIV TALLAHASSEE DEPT OF STATISTICS M I TAKSAR SEP 86 FSU-STATISTICS-M746 AFOSR-TR-87-8061 F/G 1/2 1/1 UNCLASSIFIED NL

and the second

10.00

Section 1

AD-A176 971

		ENTATION PAG	E		
TO REPORT SECURITY CLASSIFICATION		16. RESTRICTIVE MARKINGS			
UNCLASSIFIED			·		
26 SECURITY CLASSIFICATION AUTHORITY NA		Approved for Public Release; Distribution			
26 DECLASSIFICATION/DOWNGRADING	CHEDULE	Unlimited	or rappic Re	elease, Dis	ctition ton
4 PERFORMING ORGANIZATION REPORT NUMBER(S)		S. MONITORING ONGANIZATION BETTAL NOME TO			
FSU Statistics Report MT40	•	A GS			T1C -
SO NAME OF PERFORMING ORGANIZATI		74 NAME OF MONI	TORING ORGANI	ZATION	TE
Florida State University	(II applicable)	AFOSR/NM		ار ا	ECTE B 2 4 WB/
be ADDRESS (City State one 21P Code)		76. ADDRESS (City.	State and ZIP Code	EF	824
Department of Statistics		Bldg. 410 Bolling AFB, DC 20332-6448			
Tallahassee, FL 32300	v- 30 3 3	Bolling AFB	s, DC 20352~	644	¹ E
& NAME OF FUNDING SPONSORING	OFFICE SYMBOL	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
AFOSR	(If applicable)	Grant Numbe	Grant Number 549620-85-C-0007		
Sc. ADDRESS (City Store and 21P Code)		10 SOURCE OF FUNDING NOS			
Bldg. 410		PROGRAM	PROJECT	TASK	WORK UNIT
Bolling AFB, DC		ELEMENT NO.	NO.	41/5	70
11 TITLE Unclude Security Classification:		6.1102E	2304		
Free Boundary Control of B	rownian Motion and	a Related Opt	imal Stoppi	ng Problem	
Michael I. Taksar					
			September, 1986		
Decision and Control" At	ppear in the "Proc hens, Greece, Dece		h IEEE Conf	ference on	
17 COSATI CODES	18. SUBJECT TERMS	Continue on reverse if n	rcemory and identif	y by block numbe	17)
FIELD GROUP SUB. GR					:
				•	
19 ABSTRACT (Continue on reverse if necess	or and identify by block numb				
This problem is motive which in the simplest case under rain down wind condi	ated by studying d will be a model o tions.	issipative dyn f the automati	c cruise co	ontrol of a	n aircraft
We consider a new typ tions on the drift (which values. This results in t	is under our contr ne so called "sing	ol), moreover ular"'or [√] free	the drift o boundary	an take on control.	infinite
The optimal policy in cases. It consists of kee It is shown that one can f of two players with opposi	ping the process w ind optimal bounda	ithin certain ries by consid	boundaries	with minim	al efforts.
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT		21. ABSTRACT SECU		ATION	
NCLASSIFIED/UNLIMITED SAME AS	APT. D DTIC USERS D	Unclassified			
226. NAME OF RESPONSIBLE INDIVIDUAL	PL.	22b. TELEPHONE NI Ilnclude Area Co		AFOSR/NM	480 L

DD FORM 1473, 83 APR

EDITION OF 1 JAN 73 IS OBSOLETE.

FREE BOUNDARY CONTROL OF BROWNIAN MOTION AND A RELATED OPTIMAL STOPPING PROBLEM

, Accession For	
ATTS (FAAT	
1:1:20	"
The state of the Contract of t	7
plantamention	
Py	
District to	
Average Little ofe	S
5. C 715 Or	-
Pist special	
1	ì
4-1	

BY

MICHAEL I. TAKSAR*

Approved for public release; distril fion unlimited.

FSU TECHNICAL REPORT NO. M746 AFOSR TECHNICAL REPORT NO. 86-199

SEPTEMBER, 1986

DEPARTMENT OF STATISTICS FLORIDA STATE UNIVERSITY TALLAHASSEE, FL 32306-3033 AIR PORCE OFFICE OF SCIENTIFIC TESSASCH (AFSC)
N_TICE OF CREMONICUAL TOITED
This technish Report has been reviewed and is
reproved for public release IAN LET 15 --12.
The objection is unlimited.
The objection is unlimited.
The objection is unlimited.

* Research supported by the Air Force Office of Scientific Research under Grant Number F49620-85-C-0007.

FREE BOUNDARY CONTROL OF BROWNIAN MOTION AND A RELATED OPTIMAL STOPPING PROBLEM

Michael I. Taksar*

Department of Statistics Florida State University Tallahassee, FL 32306

We consider a controlled stochastic linear system

$$Z_{s} = x + X_{s-t} + R_{s-t} - L_{s-t}. \tag{1}$$

Here X is a (μ,σ^2) -Brownian motion and R and L are the control functionals, which are increasing and adapted to the σ -field generated by the process X. For the policy S = (L,R) the expected cost takes the form

$$K_{S}(x,t) = E\left\{\int_{t}^{T} h(Z_{s},s)e^{-\gamma(s-t)}ds + \ell\int_{t}^{T} e^{-\gamma(s-t)}dL_{s-t}\right.$$

$$+ r\int_{t}^{T} e^{-\gamma(s-t)}dR_{s-t}^{S-t}.$$
(2)

Here h, ℓ and r stand for holding cost and unit cost of displacement to the left and to the right respectively, and $\gamma > 0$ is the discount factor. Our objective is to characterize the optimal cost (the value function)

$$V^*(x,t) = \max_{S} K_S(x,t)$$
 (3)

and to describe the optimal policy $S^* = (L^*, R^*)$ for which $V^* = K_{S^*}$. The function V satisfies the Hamilton-Jacobi-Bellman equation (cf. [2])

$$0 = \min\{\frac{\partial V(x,t)}{\partial t} + \Gamma V(x,t) - \gamma V(x,t) + h(x,t),$$

$$DV(x,t) + r, -DV(x,t) + \ell\},$$

$$0 = V(x,T),$$
(4)

where $D = \frac{\partial}{\partial x}$ and

$$\Gamma = \frac{1}{2}\sigma^2 \frac{\partial^2}{\partial x^2} + \mu \frac{\partial}{\partial x} . \tag{5}$$

Our main technical assumptions are similar to the ones in [2]. We assume that

^{*}Research supported by the Air Force Office of Scientific Research under Grant Number F49620-85-C-0007.

$$T < \infty$$
, (6)

h(x,t) is a nonnegative function such that there exists constants m and $0 \le c \le C$, such that for every x, x', t, t'

$$c|x|^{m} - C \leq h(x,t) \leq C(1+|x|^{m}),$$

$$|h(x,t) - h(x',t)| \leq C(1+|x|^{m-1}+|x'|^{m-1}) |x - x'|,$$

$$|h(x,t) - h(x,t')| \leq C(1+|x|^{m}) |t - t'|,$$

$$0 \leq \frac{\partial^{2} f}{\partial x} (x,t) \leq C(1+|x|^{q}), q = (m-2)^{+}.$$
(7)

Theorem 1. Under the assumption (6), (7), there exists a unique solution V^* to the equation (4). This solution is the value function (3) of the control problem (1), (2).

There exists an optimal policy $S^* = (L^*, R^*)$ for which $V^* = K_{S^*}$. If

$$x_1^*(t) = min\{x: DV(x,t) = \ell\}$$

 $x_2^*(t) = max\{x: DV(x,t) = -r\}$

then for Z_S^* given by (1)

$$x_2^*(x) \le \frac{7}{5} \le x_1^*(s),$$
 (8)

and

$$\int_{t}^{T} 1_{Z_{s}^{*}} < x_{1}^{*}(s)^{dL_{s-t}^{*}} = 0$$

$$\int_{t}^{T} 1_{Z_{s}^{*}} > x_{2}^{*}(s)^{dR_{s-t}} = 0.$$
(9)

The above theorem shows that the optimal control consists of reflecting of the control process Z* from time-dependent (a` priori unknown) boundary.

Let $\mathcal{D}=\{(x,t): x_2^*(t) \le x \le x_1^*(t)\}$ and let W=DV(x,t). By formally differentiating (4) we get

$$\frac{\partial W}{\partial t} (x,t) + \Gamma W(x,t) - \gamma W(x,t) + H(x,t) = 0,$$
(10)

if $(x,t) \in \mathcal{D}$,

$$W(x,t) \le r$$
, for all $x \in \mathbb{R}$, $0 \le t \le T$, (11)

$$W(x,t) \ge -\ell$$
, for all $x \in \mathbb{R}$, $0 \le t < T$, (12)

$$W(x,T) = 0. (13)$$

where all equalities and inequalities are understood in the sense of generalized function.

Assume that H(0,t) = 0, i.e. $0 = \operatorname{argmin} h(x,t)$. Consider the following minmax problem (game of two persons)

$$W(x,t) = \sup_{\sigma} \inf_{\tau} E\{ \int_{t}^{\tau \wedge \sigma \wedge T} e^{-\gamma(s-t)} H(x+X_{s-t}) ds$$

$$+ \ell e^{-\gamma(\tau-t)} 1_{\tau < T} 1_{\tau < \sigma} - r e^{-\gamma(\sigma-t)} 1_{\sigma < T} 1_{\sigma < \tau} \},$$
(14)

where sup is taken over all stopping times $\sigma \ge t$ such that $x + \chi_{\sigma-t} < 0$ and inf is taken over all stopping times $\tau \ge t$ such that $x + \chi_{\tau-t} > 0$.

Theorem 2. The optimal stopping game described above has value that is the right hand side of (14) does not change if $\sup_{\tau} \inf_{\tau} is$ replaced by $\inf_{\tau} \sup_{\sigma}$. The value of the game W satisfies (10) - (13) and it relates to the value function V by

$$W = DV$$
.

2. Suppose h does not depend on t and we consider an infinite horizon optimization problem

$$V(x) = \sup_{R, L} E\{\int_{0}^{\infty} e^{-\gamma S} h(Z_{S}) dS$$

$$+ \int_{0}^{\infty} r e^{-\gamma S} dR_{S} + \int_{0}^{\infty} \ell e^{-\gamma S} dL_{S}\}$$
(15)

where Z_s is given by (1) with t = 0.

The Hamilton-Jacobi-Bellman equation for the value function V given by
(15) reduces to an ordinary differential equation with gradient constrains

$$0 = \min\{\Gamma V(x) - \gamma V(x) + h(x), V'(x) + r, \\ \ell - V'(x)\}$$
(16)

In case of infinite horizon control, we can loosen the assumption on h, namely we assume that h is a nonnegative convex C^1 function and

$$|h'(x)| \rightarrow \infty \text{ as } |x| \rightarrow \infty.$$
 (17)

Theorem 3. Assume that (17) holds and r, $\ell > 0$. Then there exists a unique solution $V^*(x)$ to (16). There exists a unique optimal policy R^* , L^* . If $a = \inf\{x : \frac{dV^*}{dx}(x) > -r\} \text{ and } b = \sup\{x : \frac{dV^*}{dx}(x) < \ell\} \text{ then for all } t > 0$ $a \le Z_t^* \le b$

where $I_t^* = x + X_t + R_t^* - L_t^*$. Moreover

$$\int_{0}^{\infty} 1_{Z_{\mathbf{t}}^{\star} \neq \mathbf{a}} dR_{\mathbf{t}}^{\star} = \int_{0}^{\infty} 1_{Z_{\mathbf{t}}^{\star} \neq \mathbf{b}} dL_{\mathbf{t}}^{\star} = 0.$$

The above theorem shows that the optimal control in the infinite horizon problem consists of keeping the controlled process Z* inside the interval [a,b] reflecting it at the boundaries.

We want to establish the correspondence between optimal control problems and game of optimal stopping of two persons. For simplicity, we assume that h attains its minimum at point 0.

Consider an optimal stopping game of two persons.

$$W(x) = \sup_{\sigma} \inf_{\tau} E\{\int_{0}^{\tau \wedge \partial_{-} \gamma t} h(x+X_{t}) dt + \ell e^{-\gamma \tau} 1_{\tau \leq \sigma} - r e^{-\gamma \tau} 1_{\sigma \leq \tau}\}$$
(18)

where sup is taken over all stopping times σ such that $x + X_{\sigma} > 0$ and inf is taken over all stopping times τ such that $x + X_{\tau} < 0$.

Theorem 4. The quantity in the right hand side of (18) does not change if $\sup_{\sigma} \inf_{\tau} \inf_$

$$\sigma^* = \inf\{t \colon x + X_t \le b\}$$

$$\tau^* = \inf\{t \colon x + X_t \ge a\}$$

where a and b are the same as in the theorem 3.

Similar results were obtained in [7] for the problem with average (per unit of time) criterion.

REFERENCES

- [1] Harrison, J.M. and M.I. Taksar (1983). Instantaneous control of a Brownian motion, Math. Oper. Res. 439-453.
- [2] Chow, P.L., Menaldi, J.L. and Robin M. (1985). Additive control of stochastic linear systems with finite horizon. SIAM J. Control & Optimization 23, 858-899.
- [3] Karatzas, I. (1983). A class of singular stochastic control problems.

 Adv. Appl. Probability 15, 225-254.
- [4] Karatzas, I. (1985). Probabilistic aspects of finite-fuel stochastic control. Proc. Nat'l Acad. Sciences USA 82, 5579-5581.
- [5] Karatzas, I. & Shreve, S.E. (1984). Connections between optimal stopping and singular stochastic control I: Monotone follower problems. SIAM J. Control & Optimization 22, 856-877.

| 「大きななどがない。

- [6] Karatzas, I. & Shreve, S.E. (1985). Connections between optimal stopping and singular stochastic control II: Reflected follower problems. SIAM J. Control & Optimization 23, 433-451.
- [7] Taksar, M.I. (1985). Average Optimal Singular Control and a Related Stopping Problem. Math. Oper. Res. 10, 63-81.

ANGELIE SERVICE SERVICE SOUTHER SERVICE SERVICE